Since V and V' are isomorphic (they are both *n*-dimensional), their counts of *m*-dimensional substaces are equal. The mapping $\mathfrak{m} \to \mathfrak{m}^0$ together with theorems 1 and 2 then fashions a bijection of the *m*-dimensional subspaces of \mathfrak{V} with the n - m-dimensional subspaces of \mathfrak{V}' . Injectivity: suppose $\mathfrak{m}_1^0 = \mathfrak{m}_2^0$. Then by theorem 2, we get $\mathfrak{m}_1 = \mathfrak{m}_2$. Surjectivity: let \mathfrak{m}' be a subspace of \mathfrak{V}' . Then $((\mathfrak{m}')^0)^0 = \mathfrak{m}'$, again by theorem 2.