Since V and V^{\prime} are isomorphic (they are both n-dimensional), their counts of m-dimensional substaces are equal. The mapping $\mathfrak{m} \rightarrow \mathfrak{m}^{0}$ together with theorems 1 and 2 then fashions a bijection of the m-dimensional subspaces of \mathfrak{V} with the $n-m$-dimensional subspaces of \mathfrak{V}^{\prime}. Injectivity: suppose $\mathfrak{m}_{1}^{0}=\mathfrak{m}_{2}^{0}$. Then by theorem 2, we get $\mathfrak{m}_{1}=\mathfrak{m}_{2}$. Surjectivity: let \mathfrak{m}^{\prime} be a subspace of \mathfrak{V}^{\prime}. Then $\left(\left(\mathfrak{m}^{\prime}\right)^{0}\right)^{0}=\mathfrak{m}^{\prime}$, again by theorem 2 .

