Let P(i) be the proposition $(ab)^i = a^i b^i$, for all a, b in G, where i is some integer. The problem can then be restated as $P(i) \wedge P(i+1) \wedge P(i+2) \Rightarrow G$ is abelian.

To prove this, we begin by noting (see below for proof) that

$$P(i) \wedge P(i+1) \Rightarrow (ab)^{i} = (ba)^{i} \tag{1}$$

and similarly

$$P(i+1) \wedge P(i+2) \Rightarrow (ab)^{i+1} = (ba)^{i+1}$$
 (2)

Now, $(ab)^i = (ba)^i \Rightarrow (ab)^{-i} = (ba)^{-i}$, applying to $(ab)^{i+1} = (ba)^{i+1}$ yields ab = ba.

Proof of (1):

$$(ab)^{i} = a^{i}b^{i}$$

 $(ab)^{i+1} = a^{i+1}b^{i+1}$
Now $(ab)^{i+1} = a(ba)^{i}b$, so we get $(ba)^{i} = a^{i}b^{i} = (ab)^{i}$.

Topics in Algebra – Herstein