
Camera matrix from basic principles
a reason to drag 4D space into 3D graphics

Anders Leino
http://aleino.net

October 5, 2019

1 Scope and intended audience

The intention is that this document should be readable by someone who
knows a bit of linear algebra, but may not have much practice in working
with projective space. We derive a slightly generalized pinhole camera matrix
1. The end formulation is general in the sense that the sides of the frustum
may have different slopes. This is general enough to be used for either eye in
stereo rendering, for example. Finally, we also compute the inverse camera
matrix.

Both the forward and inverse camera transformations we end up with are
represented by 4×4 matrices. This is the canonical way to represent camera
transformations in 3D graphics. Since 4 × 4 matrices can represent any
transformation that 3× 3 matrices can represent, and more, they’ve become
the canonical form for all transformations in some circles. Representing 3-
dimensional transformations using 4 × 4 matrices is an unfamiliar thing to
do, so we’ll show exactly how that works. Furthermore, we’ll also provide the
motivation for it – we’ll show that we can’t express the camera transformation
as a 3× 3 matrix, which will motivate the introduction of a new scheme for
representing transformations.

A bit more concretely, we’ll be expressing 3-dimensional transformation
fA using a 4 × 4 matrix, A. We’ll choose exactly what fA is later on. We

1This is sometimes called a “projection matrix”. The only problem with this name is
that the matrix in question does not represent a projection in any sense of the word.

1

http://aleino.net


will show that our choice or representation will have the property that “fA
followed by fB” is the same as fBA, where the BA is a regular matrix product.
This property is important because it means that we can iterate towards our
camera transformation in small steps – in the end we’ll be able to obtain the
composite just by multiplying together the matrices of each step in reverse
order. Similarly, to help us derive the inverse f−1

A , we show that this is just
equal to fA−1 where A−1 is the regular matrix inverse. These two facts will let
us forget about fA and just deal with A for the most part, as is the practice
in 3D graphics.

2 The problem

We have vertices in 3-dimensional camera space, and we want to transform
them, in the way a pinhole camera would, into another 3-dimensional space
called NDC space 2.

NDC space acts as an interface with the rasterization stage, because 3D
graphics APIs define a certain set called the clipping volume in NDC space.
For the sake of concreteness, we’ll follow Direct3D and define the clipping
volume as the following box

−1 ≤x ≤ 1

−1 ≤y ≤ 1

0 ≤z ≤ 1

The clipping volume is shown in figure 2. Since it has the shape of a box,
the clipping volume transforms via a simple scaling exactly onto the entire
screen viewport and depth buffer, for purposes of rasterization. The corners
of this box will transform to the corners of the screen viewport, and the ends
of the depth buffer. So exactly the stuff we should be able to see must get
transformed into the clipping volume in NDC space. In camera space, the
stuff we can see is inside a shape called the camera frustum, shown in figure
1.

Whatever transformation we come up with, it must transform the camera
frustum shown in figure 1 onto the clipping volume shown in figure 2. In the
next section, we’ll show that such a transform can’t be represented by 3× 3
matrices.

2NDC stands for “Normalized Device Coordinates”.

2



x

z

Figure 1: Camera frustum,
camera space

x

z

Figure 2: Clipping volume,
NDC space

3 3× 3 matrices are out

A basic fact about matrices is that they must transform planes trough the
origin onto (in general different) planes trough the origin. Now take a look
at the planes (dashed lines) in figure 1. They go trough the origin, but we
want them to transform to the corresponding planes in figure 2, and those
planes do not go trough the origin.

So our camera transformation can’t be done with 3× 3 matrices. But if
not 3×3 matrices, then what? In the next section, I’ll make a proposal for a
different way to represent transformations of 3-dimensional space, which will
let us represent our camera transformation.

4 A different way to represent 3D transfor-

mations

So we know that we can’t use 3 × 3 matrices at this point. Let’s look for
another simple representation. Preferably we want a representation of a
strictly larger set of transformations. Note, however, that we don’t want to
go too general – we want something that will work well on a computer.

3



First I’ll define two helper functions

π



x
y
z
w


 =

1

w

xy
z



ϕ

xy
z

 =


x
y
z
1


Using these, we can write our proposed transformation as 3 4

fA(v) = π(Aϕ(v))

In the above, A is any 4×4 matrix that defines the transformation fA. What
happens if we compose two such transformations in sequence? That is, first
we first transform a vector by fA and transform the result by fB. It’s an

3If you’re interested, read up on projective space and projective transformations. The
general subject is projective geometry.

4If we want to be super careful, it should be pointed out that π(v) is only defined when
vw 6= 0, which means that fA(v) is only defined when (Aϕ(v))w 6= 0. In the rest of the text
we’d have to add a lot of warnings like this about all uses of fA. If you wish, you can add
in those warnings yourself. However, this is not some theoretical consideration – nothing
is stopping a vertex shader from returning a vertex with a w-coordinate that’s zero. There
is actually a right way to handle this corner case. It becomes apparent if you skip dividing
by w = 0 and instead re-interpret your vector. You keep the regular xyz components, but
now they mean something different – they now indicate an infinitely long vector pointing
out into some direction. If one of your triangles has a vertex which happens to be this
kind of corner case, your triangle in screen space should be rasterized like an infinitely
long paralellogram (a slanted rectangle) rather than a triangle. This is completely doable
after clipping. The infinite sides of the paralellogram are parallel to the xyz-components
of your corner-case vertex. You can think trough the cases, where you have two or three
corner-case vertices in a triangle, for yourself. We will skip thinking about this – at any
rate these are cases for the 3D graphics API to handle, not the application. It’s actually a
corner case that can be handled beautifully – sadly, our chosen representation fA cannot
represent these exotic cases. That’s a deliberate trade-off so that we’ll be able to think
about regular 3D space without infinitely long vectors. For our use-case, we only need to
think about transforming points inside the camera frustum, and it’ll be easy to check later
on that we don’t get in trouble there.

4



exercise for the reader to check that π(Bϕ(π(v))) = π(Bv) for any v with
vw 6= 0. Using this we obtain

fB(fA(v)) = π(Bϕ(π(Aϕ(v)))) = π(BAϕ(v)) = fBA(v)

In other words, fA followed by fB is the same as fBA. This formula is
important, because it means we will can break our problem into steps. When
we’re done, we can obtain a compact formulation by multiplying together the
matrices corresponding to the steps, in reverse order. In the end we will have
a single 4× 4 matrix that defines our transformation!

Now we have a candidate to replace 3 × 3 matrix transformations, and
we know how to compose them. However, we still haven’t shown that this
candidate can do the job that 3 × 3 matrices could not. We’ll do that in
the next section by solving the problem using the kinds of transformations
introduced in this section.

5 Deriving the camera transformation

We’re really supposed to transform figure 1. However, let’s generalize it a
bit so that both sides of the frustum may have different slopes, as seen in
the image below. As said in the first section, this is the situation in stereo
rendering, for example. So we begin with the frustum in camera space shown
in the image below.

x

z
x = α1z x = α2z

z = γ2

z = γ1

Next, we’ll iteratively deform the camera frustum shape into the clipping
volume in NDC space, keeping a record of the sequence of matrices we’ve
used so that we can obtain the final matrix in the end.

5



5.1 Bend the frustum into a box

First, let’s bend the frustum into a box shape, since that’s the shape in the
final image. To do this, we apply fA where 5

A =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Let’s see what our transformation is:

fA

xy
z

 =

x/zy/z
1/z


If you plug in the equation for the left plane, x = α1z, you’ll see that it
transforms to the plane x = α1. Similarly x = α2z transforms to x = α2

and the planes z = γ1 and z = γ2 will transform to z = γ−1
1 and z = γ−2

2 ,
respectively.

So fA will transform our frustum shape to a box shape, as in the following
image.

x

z
x = α1 x = α2

z = γ−1
2

z = γ−1
1

5.2 Translation

Now we want to translate our box so as to center it along the x and y
direction, and also to line up its bottom with z = 0. This is another thing

5This is the one place we have to be a bit careful – fA is not defined on the z = 0 plane.
As said before, it’s not actually such an ugly case. In any event, our camera frustum never
intersects this plane, so let’s ignore this issue.

6



you can’t do with a 3× 3 matrix. Again we can prove this assertion by using
a basic fact about matrices – they must transform the zero vector into the
zero vector, which means you can’t do translations.

We define

B =


1 0 0 −α1+α2

2

0 1 0 −β1+β2
2

0 0 1 −γ−1
2

0 0 0 1


Our transformation will do the following

fB

xy
z

 =

x− α1+α2

2

y − β1+β2
2

z − γ−1
2


So, for instance, the x = α1 plane transformed into −α2−α1

2
as desired. The

effect of the transformation on the other planes can be checked similarly. We
end up with a picture like the following.

x

z
x = −α2−α1

2 x = α2−α1

2

z = γ−1
1 − γ−1

2

5.3 Scaling

Our last image looks about right, except our region does not have the right
size – so we’ll scale it. This operation we could have done with 3×3 matrices,
but now we need to do it in the proposed way so that it will compose nicely
with our other transformations. We define

C =


2

α2−α1
0 0 0

0 2
β2−β1 0 0

0 0 1
γ−1
1 −γ−1

2

0

0 0 0 1


7



Our transformation becomes

fC

xy
z

 =


2x

α2−α1
2y

β2−β1
z

γ−1
1 −γ−1

2


So the z = γ−1

1 −γ−1
2 becomes z = 1 when transformed, as desired if we want

to fit it to the clipping volume. If you check the other planes in a similar
way, you’ll agree that the image ends up looking as follows.

x

z
x = −1 x = +1

z = 1

This region is exactly the same as the clipping region in NDC space,
which is what we were iterating towards.

5.4 Obtaining the final matrix

We now have three matrices A, B and C which we have chosen such that fA
followed by fB followed by fC implements the transformation we want. We
know that this composition equals simply fCBA, so let’s calculate CBA:

CBA =


2

α2−α1
0 0 0

0 2
β2−β1 0 0

0 0 1
γ−1
1 −γ−1

2

0

0 0 0 1




1 0 0 −α1+α2

2

0 1 0 −β1+β2
2

0 0 1 −γ−1
2

0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


2

α2−α1
0 α1+α2

α1−α2
0

0 2
β2−β1

β1+β2
β1−β2 0

0 0
γ−1
2

γ−1
2 −γ−1

1

1
γ−1
1 −γ−1

2

0 0 1 0


8



Now we have a single matrix CBA that represents a transformation fCBA
which will transform our frustum shape into the clipping volume shape.
Transforming between those two shapes is a necessary requirement, but does
the fact that we fulfill this one requirement mean we’re done?

6 Are we done?

To answer this question, let’s obtain the actual formulas for how a vector is
transformed by fCBA:

fCBA

xy
z

 =


2

α2−α1

x
z

+ α1+α2

α1−α2
2

β2−β1
y
z

+ β1+β2
β1−β2

z−1−γ−1
2

γ−1
1 −γ−1

2


With these explicit formulas, you can do a bunch of checks to convince

yourself that this transform is good. For one thing, the formulas have per-
spective foreshortening along the x and y directions. Note that the two
constant terms in the x and y components would disappear for a symmetric
frustum where α1 = −α2 and β1 = −β2.

So that all looks good. However, take a look at the third component,
which is called the depth in the terminology of 3D graphics APIs. It is

d(z) =
z−1 − γ−1

2

γ−1
1 − γ−1

2

This value transforms via a simple scaling into the depth buffer. d(z) has
the shape of z−1, except it has been translated vertically by −γ−1

2 and then
scaled vertically by 1

γ−1
1 −γ−1

2

, which is a positive number. This means that

smaller z values get larger depth values and vice versa.
Is that a problem? No! In all modern 3D graphics APIs you can change

the comparison function to pass a new fragment if their depth is larger than
the existing depth, rather than smaller which is the default.

The actual important feature of d(z) is that it’s monotonic – not whether
it increases or decreases. In fact, not only is it not an issue – it’s often
an advantage because the shape of d roughly cancels out the non-uniform
distribution of floating point numbers so that the distribution of depth values

9



becomes roughly uniform, as explained in “Depth Precision Visualized” by
Nathan Reed 6.

Since d is monotonic, and d(γ1) = 1 and d(γ2) = 0, we conclude that
the entire range of our camera frustum transforms exactly into the entire
range of the clip volume in NDC space. We specifically enforced this in the
derivation, but it’s a good sanity check.

7 Who does what?

If you’re familiar with 3D graphics APIs, π should be familiar to you. If
your vertex shader returns v, then your 3D graphics API specifies that π(v)
will be calculated for you automatically. In fact π transforms your vertex
shader output positions into NDC space! So your vertex shader only has to
calculate Aϕ(v). If you set things up so that your vertex shader gets ϕ(v)
as input, that might mean that the only thing your vertex shader does is to
apply A.

8 The inverse

Can we find f−1
CBA? This is the inverse transform, which should take you from

NDC-space back to camera space.

8.1 A general formula

Let’s see what we can say about f−1
A in general. We’ll assume A is invertible,

which is in fact the case in our specific application. You can also start from
a pixel coordinate and depth buffer value, and un-quantize that to get to
NDC-space. 7

fA is a composition of three functions: first do ϕ, then apply A and finally
do π. Suppose we start with a point (x, y, z) in NDC space. We obtain the
transformation of this point under f−1

A by applying π−1, A−1 and finally ϕ−1

in that order.

6https://developer.nvidia.com/content/depth-precision-visualized
7You can’t really “un-quantize”, of course. Quantizing means throwing away infor-

mation. I just mean that you’ll have an approximation of the value in NDC-space, after
“un-quantizing”.

10

https://developer.nvidia.com/content/depth-precision-visualized


8.2 Applying π−1

π is not an invertible function – that is to say: if we have (x, y, z), we don’t
know which of the points (xw, yw, zw,w) (with w 6= 0) transformed via π to
(x, y, z). What’s the solution? We continue with all of these points at once!

It turns out that we’ll be able to determine w later on. So let’s proceed
with a whole set of candidates of the form (xw, yw, zw,w), where all we know
about w is that w 6= 0.

8.3 Applying A−1

The next step is to apply the inverse of A to each of our candidates. So now
we have

A−1


xw
yw
zw
w


where w 6= 0.

8.4 Applying ϕ−1

Now we apply ϕ−1. However, note that ϕ only outputs points with w-
coordinate equal to 1. This in turn means that the only candidate we can
actually send trough ϕ−1 is the one with w-coordinate equal to 1.

In other words, we have a constraintA−1


xw
yw
zw
w



w

= 1

This constraint determines w:

w =
1A−1


x
y
z
1



w

11



Now that we know that w can only take the above value – we can sub-
stitute that to reduce our set of candidates to a single one:

A−1


x
y
z
1


A−1


x
y
z
1



w

Sending this candidate trough ϕ−1, we obtainA−1


x
y
z
1



xyzA−1


x
y
z
1



w

That’s cumbersome notation... I wonder if we have any helper functions
laying around... Hey, I know, let’s write the above in terms of π and ϕ! We
get

π

A−1ϕ

xy
z


But that’s just the definition for fA, except that we have A−1 in place of A.
In other words, our final inverse is just

fA−1

xy
z


So we have figured out that f−1

A = fA−1 . Therefore, in order to go back-
wards, we just need to obtain (CBA)−1.

12



8.5 Obtaining (CBA)−1

Have you ever tried to invert a 4 × 4 matrix by hand? There are formulas
for it, but it’s messy. Since we’re doing some math, let’s take a page from
Gus Van Sant’s book (or short film, rather) and apply The Discipline of Do
Easy.

We can get the inverse in an easier way because we know more than
just the final camera matrix – we know how to express it as a product of
three simple matrices: CBA. A general fact about matrices is that if each
of A, B and C are invertible, then so is CBA and we have a nice formula:
(CBA)−1 = A−1B−1C−1. (This generalizes to any length of product). You
can easily see that A−1 = A. B is just a translation, so that’s easy to invert
by making a similar matrix that translates by the negative of the offset by
which B translates. Finally C is a scaling, which is also easy to invert. So
we calculate

(CBA)−1 = A−1B−1C−1

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


−1

1 0 0 −α1+α2

2

0 1 0 −β1+β2
2

0 0 1 −γ−1
2

0 0 0 1


−1


2

α2−α1
0 0 0

0 2
β2−β1 0 0

0 0 1
γ−1
1 −γ−1

2

0

0 0 0 1


−1

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 α1+α2

2

0 1 0 β1+β2
2

0 0 1 γ−1
2

0 0 0 1




α2−α1

2
0 0 0

0 β2−β1
2

0 0
0 0 γ−1

1 − γ−1
2 0

0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




α2−α1

2
0 0 α1+α2

2

0 β2−β1
2

0 β1+β2
2

0 0 γ−1
1 − γ−1

2 0
0 0 0 1



=


α2−α1

2
0 0 α1+α2

2

0 β2−β1
2

0 β1+β2
2

0 0 0 1
0 0 γ−1

1 − γ−1
2 0


So now if someone gives you a depth buffer value and a pixel position,

you can convert that to NDC space with a simple scaling and then apply
f−1
CBA = f(CBA)−1 , which will transform back to camera space.

13



9 Acknowledgements

Some people found mistakes and gave suggestions. Thanks Sami Väisänen
and Konsta Hölttä!

14


	Scope and intended audience
	The problem
	33 matrices are out
	A different way to represent 3D transformations
	Deriving the camera transformation
	Bend the frustum into a box
	Translation
	Scaling
	Obtaining the final matrix

	Are we done?
	Who does what?
	The inverse
	A general formula
	Applying -1
	Applying A-1
	Applying -1
	Obtaining (CBA)-1

	Acknowledgements

