A Neat Vector Expression for The Direction of Refraction

Anders Leino
http://aleino.net

June 10, 2018

1 Introduction

Snell's law is

$$
n_{1} \sin \theta_{2}=n_{2} \sin \theta_{2}
$$

where n_{1}, n_{2} are the refractive indices of the two materials. The angles θ_{1}, θ_{2} are the angles that the incoming and refracted rays make with the normal direction. One could calculate $\theta_{2}=\arcsin \left(\frac{n_{1}}{n_{2}} \sin \theta_{1}\right)$ and then calculate the direction of refraction from θ_{2} using sine and cosine and a bit of vector arithmetic. All told, that's a very expensive way of calculating the direction of refraction. In this document, we derive an economical vector expression instead.

2 Vector expression

Suppose that the direction of the incoming ray is v_{1}, and the outgoing ray is v_{2}. We make no assumption about the length of v_{1}, and pose no requirement on the length of v_{2}.

Snell's can be translated as

$$
n_{1} \frac{\left\langle v_{1}, t\right\rangle}{\left|v_{1}\right|}=n_{2} \frac{\left\langle v_{2}, t\right\rangle}{\left|v_{2}\right|}
$$

where t is the transverse vector, $t=\frac{v_{i}-\left\langle v_{1}, n\right\rangle n}{\left|v_{i}-\left\langle v_{1}, n\right\rangle n\right|}$ and n is the normal vector. We will assume $|n|=1$.

Now we find the components of v_{2} with respect to n and t

$$
\begin{gathered}
\left\langle v_{2}, t\right\rangle=\frac{n_{1}}{n_{2}} \frac{\left|v_{2}\right|}{\left|v_{1}\right|}\left\langle v_{1}, t\right\rangle \\
\left\langle v_{2}, n\right\rangle=-\sqrt{\left|v_{2}\right|^{2}-\left\langle v_{2}, t\right\rangle^{2}}=-\sqrt{\left|v_{2}\right|^{2}-\frac{n_{1}^{2}}{n_{2}^{2}} \frac{\left|v_{2}\right|^{2}}{\left|v_{1}\right|^{2}}\left\langle v_{1}, t\right\rangle^{2}}
\end{gathered}
$$

Note that we've chosen the sign of $\left\langle v_{2}, n\right\rangle$ to be negative. This choice is arbitrary, and Snell's law itself does not make it for us. Snell's law only says that the signs of $\left\langle v_{1}, n\right\rangle$ and $\left\langle v_{2}, n\right\rangle$ are equal.

Now we can calculate $v_{2}=\left\langle v_{2}, t\right\rangle t+\left\langle v_{2}, n\right\rangle n$. If we substitute everything in, we get this somewhat messy expression

$$
v_{2}=\frac{n_{1}}{n_{2}} \frac{\left|v_{2}\right|}{\left|v_{1}\right|}\left\langle v_{1}, t\right\rangle t-\sqrt{\left|v_{2}\right|^{2}-\frac{n_{1}^{2}}{n_{2}^{2}} \frac{\left|v_{2}\right|^{2}}{\left|v_{1}\right|^{2}}\left\langle v_{1}, t\right\rangle^{2} n}
$$

Note that when we wrote down $v_{2}=\left\langle v_{2}, t\right\rangle t+\left\langle v_{2}, n\right\rangle n$, we implicitly decided that $\left|v_{2}\right|=\left|v_{1}\right|$. Thus we have

$$
v_{2}=\frac{n_{1}}{n_{2}}\left\langle v_{1}, t\right\rangle t-\sqrt{\left|v_{1}\right|^{2}-\left(\frac{n_{1}}{n_{2}}\right)^{2}\left\langle v_{1}, t\right\rangle^{2} n}
$$

Now remember that $t=\frac{\tau}{|\tau|}$ where $\tau=v_{1}-\left\langle v_{1}, n\right\rangle n$. We can get rid of t in favor of τ, and clean up the expression further. Note that $\left\langle v_{1}, t\right\rangle=\frac{\left\langle v_{1}, \tau\right\rangle}{|\tau|}=$ $\frac{\left|v_{1}\right|^{2}-\left\langle v_{1}, n\right\rangle^{2}}{|\tau|}=\frac{\left\langle v_{1}, t\right\rangle^{2}}{|\tau|}$, which implies $\left\langle v_{1}, t\right\rangle=|\tau|$. Using this, we get

$$
v_{2}=\frac{n_{1}}{n_{2}} \tau-\sqrt{\left|v_{1}\right|^{2}-\left(\frac{n_{1}}{n_{2}}\right)^{2}|\tau|^{2} n}
$$

Now define $\omega=\frac{n_{1}}{n_{2}} \tau=\frac{n_{1}}{n_{2}}\left(v_{1}-\left\langle v_{1}, n\right\rangle n\right)$ to obtain our preferred expression

$$
v_{2}=\omega-\sqrt{\left|v_{1}\right|^{2}-|\omega|^{2}} n
$$

We implicitly enforced $\left|v_{1}\right|=\left|v_{2}\right|$, but it can be verified again using the above expression. It's easy to check that the condition of total internal refraction is exactly when $\left|v_{1}\right|^{2}<|\omega|^{2}$.

