Chapter 4 - Integration on Chains/Chapter 4 - The Fundamental Theorem of Calculus problem 34, p. 108
(a) Following the definitions, we have
$\partial C_{F, G}=-\left(C_{F, G}\right)_{(1,0)}+\left(C_{F, G}\right)_{(1,1)}+\left(C_{F, G}\right)_{(2,0)}-\left(C_{F, G}\right)_{(2,1)}-\left(C_{F, G}\right)_{(3,0)}+\left(C_{F, G}\right)_{(3,1)}$
where

$$
\begin{gathered}
\left(C_{F, G}\right)_{(1,0)}(u, v)=C_{F, G}(0, u, v)=F(0, u)-G(0, v)=C_{F_{0}, G_{0}}(u, v) \\
\left(C_{F, G}\right)_{(1,1)}(u, v)=C_{F, G}(1, u, v)=F(1, u)-G(1, v)=C_{F_{1}, G_{1}}(u, v) \\
\left(C_{F, G}\right)_{(2,0)}(s, v)=C_{F, G}(s, 0, v)=F(s, 0)-G(s, v) \\
\left(C_{F, G}\right)_{(2,1)}(s, v)=C_{F, G}(s, 1, v)=F(s, 1)-G(s, v) \\
\left(C_{F, G}\right)_{(3,0)}(s, u)=C_{F, G}(s, u, 0)=F(s, u)-G(s, 0) \\
\left(C_{F, G}\right)_{(3,1)}(s, v)=C_{F, G}(s, u, 1)=F(s, u)-G(s, 1)
\end{gathered}
$$

Since each F_{s} is closed, i.e. $F(s, 0)=F(s, 1)$, for all s, we see that $\left(C_{F, G}\right)_{(2,0)}=\left(C_{F, G}\right)_{(2,1)}$.

Similarly, since each G_{s} is closed, $\left(C_{F, G}\right)_{(3,0)}=\left(C_{F, G}\right)_{(3,1)}$. Thus, the only surviving terms of $\partial C_{F, G}$ are those due to $\left(C_{F, G}\right)_{(1,0)}$ and $\left(C_{F, G}\right)_{(1,1)}$. So $\partial C_{F, G}=C_{F_{1}, G_{1}}-C_{F_{0}, G_{0}}$ follows.
(b) If $d \omega=0$ then by (a) and Theorem 4-13 (Stoke's theorem), we get

$$
0=\int_{C_{F, G}} d \omega=\int_{\partial C_{F, G}} \omega=\int_{C_{F_{1}, G_{1}}} \omega-\int_{C_{F_{0}, G_{0}}} \omega
$$

so we conclude $\int_{C_{F_{1}, G_{1}}} \omega=\int_{C_{F_{0}, G_{0}}} \omega$.

