Exercise 3 (page 12)

Yes, it is true. Suppose x+y, y+z and x+z were not linearly independent. For instance, suppose $\exists \alpha, \beta$ s.t. $\alpha(x+y)+\beta(y+z)=x+z$. Then we'd have

$$\alpha(x+y) + \beta(y+z) = x+z$$

$$(1 - \alpha)x + (1 - \beta)z = y(\alpha + \beta)$$

If any two of $1-\alpha,\,1-\beta$ and $\alpha+\beta$ are zero, then the third one is not zero:

$$1 - \alpha = 0$$
 and $1 - \beta = 0 \Rightarrow \alpha + \beta = 2$

$$1 - \alpha = 0$$
 and $\alpha + \beta = 0 \Rightarrow 1 - \beta = 2$

$$1 - \beta = 0$$
 and $\alpha + \beta = 0 \Rightarrow 1 - \alpha = 2$

ISBN10: 0-387-90093-4

Therefore $\{x, y, z\}$ are linearly dependent.