Exercise 6 (page 19)

By theorem 2, we can find a basisi of \mathfrak{V} s.t. $\{x_1, \dots, x_m, y_1, \dots, y_{N-m}\}$, where $N = \dim(\mathfrak{V}), \{x_1, \dots, x_m\}$ is a basis for \mathfrak{m} and $m \neq 0, N$. It is clear that $\mathfrak{n} = \operatorname{span} y_i$ is a complement to \mathfrak{m} . Now let $y = a_1 x_1 + \dots + a_m x_m + b_1 y_1 + \dots + b_{N-m} x_{N-m}$ where not all a_i and not all b_i are zero. This means that $y \notin \mathfrak{m}$ and $y \notin \mathfrak{n}$. Suppose, without loss of generality, that $b_1 \neq 0$. Then $\{x_1, \dots, x_m, y, y_2, \dots, y_{N-m}\}$ also spans \mathfrak{V} , and so $\{y, y_2, \dots, y_{N-m}\}$ is a different complement to \mathfrak{m} . Thus, the answer to (a) is "no". As for (b), the only thing to note is that if $\{x_1, \dots, x_m\}$ is a basis for \mathfrak{m} and $\{y_1, \dots, y_n\}$ is a basis for \mathfrak{n} , and if \mathfrak{m} and \mathfrak{n} are complements, then clearly $\{x_1, \dots, x_m, y_1, \dots, y_n\}$ spans \mathfrak{V} , and furthermore this set is linearly independent since the $\{x_i\}$ and $\{y_i\}$ are, and since $\mathfrak{m} \cap \mathfrak{n} = \mathfrak{0}$. Thus dim $\mathfrak{V} = m + n$.