Chapter 1 - Spaces/Chapter 12 - Dimension of a subspace

Exercise 6 (page 19)

By theorem 2, we can find a basisi of \mathfrak{V} s.t. $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{N-m}\right\}$, where $N=\operatorname{dim}(\mathfrak{V}),\left\{x_{1}, \cdots, x_{m}\right\}$ is a basis for \mathfrak{m} and $m \neq 0, N$. It is clear that $\mathfrak{n}=\operatorname{span} y_{i}$ is a complement to \mathfrak{m}. Now let $y=a_{1} x_{1}+\cdots+a_{m} x_{m}+$ $b_{1} y_{1}+\cdots+b_{N-m} x_{N-m}$ where not all a_{i} and not all b_{i} are zero. This means that $y \notin \mathfrak{m}$ and $y \notin \mathfrak{n}$. Suppose, without loss of generality, that $b_{1} \neq 0$. Then $\left\{x_{1}, \cdots, x_{m}, y, y_{2}, \cdots, y_{N-m}\right\}$ also spans \mathfrak{V}, and so $\left\{y, y_{2}, \cdots, y_{N-m}\right\}$ is a different complement to \mathfrak{m}. Thus, the answer to (a) is "no". As for (b), the only thing to note is that if $\left\{x_{1}, \cdots, x_{m}\right\}$ is a basis for \mathfrak{m} and $\left\{y_{1}, \cdots, y_{n}\right\}$ is a basis for \mathfrak{n}, and if \mathfrak{m} and \mathfrak{n} are complements, then clearly $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{n}\right\}$ spans \mathfrak{V}, and furthermore this set is linearly independent since the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are, and since $\mathfrak{m} \cap \mathfrak{n}=\boldsymbol{o}$. Thus $\operatorname{dim} \mathfrak{V}=m+n$.

