Exercise 7 (page 26)

Since V and V^{\prime} are isomorphic (they are both n-dimensional), their counts of m-dimensional substaces are equal. The mapping $\mathfrak{m} \rightarrow \mathfrak{m}^{0}$ together with theorems 1 and 2 then fashions a bijection of the m-dimensional subspaces of \mathfrak{V} with the n - m-dimensional subspaces of \mathfrak{V}^{\prime}. Injectivity: suppose $\mathfrak{m}_{1}^{0}=\mathfrak{m}_{2}^{0}$. Then by theorem 2, we get $\mathfrak{m}_{1}=\mathfrak{m}_{2}$. Surjectivity: let \mathfrak{m}^{\prime} be a subspace of \mathfrak{V}^{\prime}. Then $\left(\left(\mathfrak{m}^{\prime}\right)^{0}\right)^{0}=\mathfrak{m}^{\prime}$, again by theorem 2 .

Exercise 8 (page 27)
(c) We need to show $(\mathfrak{m}+\mathfrak{n})^{\circ}=\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}$ and $(\mathfrak{m} \cap \mathfrak{n})^{\circ}=\mathfrak{m}^{\circ}+\mathfrak{n}^{\circ}$. Note that

$$
\begin{gathered}
\mathfrak{m} \cap \mathfrak{n} \subset \mathfrak{m}, \mathfrak{n} \\
(\mathfrak{m} \cap \mathfrak{n})^{\circ} \supset \mathfrak{m}^{\circ}, \mathfrak{n}^{\circ}
\end{gathered}
$$

Thus

$$
\begin{equation*}
(\mathfrak{m} \cap \mathfrak{n})^{\circ} \supset \mathfrak{m}^{\circ}+\mathfrak{n}^{\circ} \tag{1}
\end{equation*}
$$

But then it follows (by applying \bullet° to all sets) that

$$
\begin{gather*}
\left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right)^{\circ} \supset\left(\mathfrak{m}^{\circ}\right)^{\circ}+\left(\mathfrak{n}^{\circ}\right)^{\circ} \\
\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ} \supset \mathfrak{m}+\mathfrak{n} \tag{2}
\end{gather*}
$$

From (1) also follows that

$$
\operatorname{dim}(\mathfrak{m} \cap \mathfrak{n})^{\circ} \geq \operatorname{dim}\left(\mathfrak{m}^{\circ}+\mathfrak{n}^{\circ}\right)
$$

Letting $N=\operatorname{dim}(\mathfrak{V}), m=\operatorname{dim} \mathfrak{m}, n=\operatorname{dim}(\mathfrak{n})$, we have

$$
\begin{gather*}
N-\operatorname{dim}(\mathfrak{m} \cap \mathfrak{n}) \geq \operatorname{dim}\left(\mathfrak{m}^{\circ}\right)+\operatorname{dim}\left(\mathfrak{n}^{\circ}\right)-\operatorname{dim}\left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right) \\
N-(m+n-\operatorname{dim}(\mathfrak{m}+\mathfrak{n})) \geq N-m+N-n-\operatorname{dim}\left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right) \\
\operatorname{dim}(\mathfrak{m}+\mathfrak{n})) \geq N-\operatorname{dim}\left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right) \\
\left.\operatorname{dim}\left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right) \geq N-\operatorname{dim}(\mathfrak{m}+\mathfrak{n})\right) \tag{3}
\end{gather*}
$$

Now, (2) and (3) together imply that

$$
\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}=(\mathfrak{m}+\mathfrak{n})^{\circ}
$$

and in a similar way as (2) follows from (1), we may turn this formula into $\left.(\mathfrak{m} \cap \mathfrak{n})^{\circ}=\mathfrak{m}^{\circ}+\mathfrak{n}^{\circ}\right)$.

