Chapter 2 - Group Theory/Chapter 5 - A Counting Principle

Exercise 2 (page 46)

We will show that if there is $a \in G$ of finite order, then $\cap H=\{e\}$, where H ranges over the subgroups of G such that $H \neq\{e\}$ (i.e. H is non-trivial).

Clearly $\langle a\rangle \supset \cap H$. We now show that $\cap_{H \subset\langle a\rangle} H=\{e\}$. Pick any $H \subset\langle a\rangle$. There exists a smallest $n>0$ s.t. $a^{n} \in H$. Suppose $n \nmid m$ for some m. Then $x=x n+y$ for some $0<y<n$. Thus $a^{m}=a^{x n+y} \Rightarrow a^{m-x n}=a^{y} \in G$ which contradicts minimality of n.

We can now easily state that $a^{k} \in G$ iff $n \mid k$. Thus $a^{k} \in \cap_{H \subset\langle a\rangle} H$ iff $p \mid k$ for all $p \in \mathbb{Z}$. This implies that $k=0$, so $\cap_{H \subset\langle a\rangle} H=\{e\}$.

