Chapter 1 - Functions on Euclidean Space/Chapter 1 - Norm and inner product

Exercise 7 (page 4)

(a) Suppose T preserves inner product. Then $|T x|=\sqrt{\langle T x, T x\rangle}=$ $\sqrt{\langle x, x\rangle}=|x|$. Thus T is norm preserving. Now suppose T preserves norm. Then by theorem $1-2(5)$, we have $\langle T x, T y\rangle=\frac{|T x+T y|^{2}-|T x-T y|^{2}}{4}=$ $\frac{|T(x+y)|^{2}-|T(x-y)|^{2}}{4}=\frac{|x+y|^{2}-|x-y|^{2}}{4}=\langle x, y\rangle$, and so T preserves inner product. (b) If T was not 1 -to-1, then there would exist x, y with $x \neq y$ (i.e. $|x-y|>0$), yet with $T x=T y$ (i.e. $|T x-T y|=0$. But by hypothesis $|T x-T y|=|x-y|=0$, so T must have an inverse, which is clearly also norm preserving (and therefore it also preserves the inner product).

