Chapter 2 - Differentiation

5 - Inverse functions

Exercise 37 (page 39)

(a) Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $g(x, y)=(f(x, y), y)$. The differential is then

$$
g^{\prime}(x, y)=\left(\begin{array}{cc}
D_{1} f(x, y) & D_{2} f(x, y) \\
0 & 1
\end{array}\right)
$$

and so $\operatorname{det} g^{\prime}(x, y)=D_{1} f(x, y)$. Now, if f is $1-1$, then there must exist some point (a, b) at which $\operatorname{det} g^{\prime}(a, b) \neq 0$.

