2 - Continuity

Exercise 18 (page 36)

Let $U \subset Y$ be an open set, and let $p \in f^{-1}(U)$. There is an m such that $p \in A_m$. Note that $(f|_{A_{m+1}})^{-1}(U) = f^{-1}(U) \cap A_{m+1}$, which is open in A_{m+1} . This means that there is an open set $V \subset X$ such that $V \cap A_{m+1} = f^{-1}(U) \cap A_{m+1}$. Define $W = V \cap A_{m+1}^{\circ}$, which is open in X. We know that $p \in A_m \subset A_{m+1}^{\circ}$, and $p \in f^{-1}(U) \cap A_{m+1} = V \cap A_{m+1}$ implies that $p \in V$, so we can conclude $p \in W$. Finally, note that $W = V \cap A_{m+1}^{\circ} \subset V \cap A_{m+1} = f^{-1}(U) \cap A_{m+1} \subset f^{-1}(U)$, so we conclude $W \subset f^{-1}(U)$. Thus, W is an open set containing p, and is contained in $f^{-1}(U)$. We conclude that $f^{-1}(U)$ is open, for any open $U \subset Y$, and therefore f is continuous.

3 - Compactness and Connectedness

Exercise 3 (page 47)

Let I be the (compact) intervall, and let $S \subset I$ be infinite. Suppose S has no limit points in I. Then there is an open U_x for each $x \in I$ such that $x \in U_x$ and $(U_x - \{x\}) \cap S = \emptyset$. Since $\{U_X | x \in I\}$ forms an open cover of I, Heine-Borel tells us that there are x_1, \ldots, x_n such that $I \subset U_{x_1} \cup \cdots \cup U_{x_n}$. Each U_{x_i} contains at most one point from S and therefore S must be finite – a contradiction.

Exercise 6 (page 50)

Let X = [0, 1] as a subspace of \mathbb{E} . Let Y = [0, 1] as a subspace of \mathbb{R} with the co-finite topology. Let $f : X \to Y$ with f(x) = x, for all $x \in X$. It is clear that f is 1-1 and onto, and since all co-finite sets are also open, f is continuous. On the other hand f([0, 1)) = [0, 1) which is open in X but not in Y. Thus f^{-1} is not continuous.

Exercise 7 (page 50)

We begin by defining

Basic Topology – Armstrong

ISBN10: 0-387-90839-0

$$x_{0} = 0$$

$$x_{n} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

$$r_{n} = \frac{1}{n+1}$$

$$U = \mathbb{E}^{2} - \{(x, 0) : x \ge 0\}$$

$$B_{n} = B(x_{n}, r_{n}), n \ge 0$$

We claim that $\{U, B_1, \ldots\}$ constitutes an open cover of \mathbb{E}^2 . (To see that it is really a cover, first note that (x_n) diverges. Therefore, for any $a \ge 0$, there is a largest N such that $x_N \le a$. This implies that $|x_N - a| < r_n$, i.e. $(a, 0) \in B_N$. In other words, any point in U^c is contained in some B_n , so we have a cover. It should be clear that the selected sets are open.)

We will now see that this open cover shows that Lebesgue's lemma doesn't hold for \mathbb{E}^2 . Pick some $\delta > 0$, and pick N large enough that $r_N < \delta$. Then the open ball $B((x_N, 0), \delta)$ is not contained U nor in any B_n .

Exercise 11 (page 50)

Let $\mathfrak{B} = \{(-\infty, a) : a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}$. By theorem 2.5, this forms the basis for some topology on \mathbb{R} . In this topology, [0, 1] is compact, but it's closure is $[0, \infty)$, which is not compact.