1 - Spaces

7 - Bases

Exercise 3 (page 12)

Yes, it is true. Suppose x + y, y + z and x + z were not linearly independent. For instance, suppose $\exists \alpha, \beta$ s.t. $\alpha(x+y) + \beta(y+z) = x + z$. Then we'd have

$$\alpha(x+y) + \beta(y+z) = x+z$$
$$(1-\alpha)x + (1-\beta)z = y(\alpha+\beta)$$

If any two of $1 - \alpha$, $1 - \beta$ and $\alpha + \beta$ are zero, then the third one is not zero:

 $1 - \alpha = 0 \text{ and } 1 - \beta = 0 \Rightarrow \alpha + \beta = 2$ $1 - \alpha = 0 \text{ and } \alpha + \beta = 0 \Rightarrow 1 - \beta = 2$ $1 - \beta = 0 \text{ and } \alpha + \beta = 0 \Rightarrow 1 - \alpha = 2$

Therefore $\{x, y, z\}$ are linearly dependent.

12 - Dimension of a subspace

Exercise 6 (page 19)

By theorem 2, we can find a basisi of \mathfrak{V} s.t. $\{x_1, \dots, x_m, y_1, \dots, y_{N-m}\}$, where $N = \dim(\mathfrak{V}), \{x_1, \dots, x_m\}$ is a basis for \mathfrak{m} and $m \neq 0, N$. It is clear that $\mathfrak{n} = \operatorname{span} y_i$ is a complement to \mathfrak{m} . Now let $y = a_1 x_1 + \dots + a_m x_m + b_1 y_1 + \dots + b_{N-m} x_{N-m}$ where not all a_i and not all b_i are zero. This means that $y \notin \mathfrak{m}$ and $y \notin \mathfrak{n}$. Suppose, without loss of generality, that $b_1 \neq 0$. Then $\{x_1, \dots, x_m, y, y_2, \dots, y_{N-m}\}$ also spans \mathfrak{V} , and so $\{y, y_2, \dots, y_{N-m}\}$ is a different complement to \mathfrak{m} . Thus, the answer to (a) is "no". As for (b), the only thing to note is that if $\{x_1, \dots, x_m\}$ is a basis for \mathfrak{m} and $\{y_1, \dots, y_n\}$ is a basis for \mathfrak{n} , and if \mathfrak{m} and \mathfrak{n} are complements, then clearly $\{x_1, \dots, x_m, y_1, \dots, y_n\}$ spans \mathfrak{V} , and furthermore this set is linearly independent since the $\{x_i\}$ and $\{y_i\}$ are, and since $\mathfrak{m} \cap \mathfrak{n} = \mathfrak{0}$. Thus dim $\mathfrak{V} = m + n$.

Finite-Dimensional Vector Spaces – Halmos

ISBN10: 0-387-90093-4

17 - Annihilators

Exercise 7 (page 26)

Since V and V' are isomorphic (they are both *n*-dimensional), their counts of *m*-dimensional substaces are equal. The mapping $\mathfrak{m} \to \mathfrak{m}^0$ together with theorems 1 and 2 then fashions a bijection of the *m*-dimensional subspaces of \mathfrak{V} with the n - m-dimensional subspaces of \mathfrak{V}' . Injectivity: suppose $\mathfrak{m}_1^0 = \mathfrak{m}_2^0$. Then by theorem 2, we get $\mathfrak{m}_1 = \mathfrak{m}_2$. Surjectivity: let \mathfrak{m}' be a subspace of \mathfrak{V}' . Then $((\mathfrak{m}')^0)^0 = \mathfrak{m}'$, again by theorem 2.

Exercise 8 (page 27)

(c) We need to show $(\mathfrak{m} + \mathfrak{n})^{\circ} = \mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}$ and $(\mathfrak{m} \cap \mathfrak{n})^{\circ} = \mathfrak{m}^{\circ} + \mathfrak{n}^{\circ}$. Note that

$$\mathfrak{m} \cap \mathfrak{n} \subset \mathfrak{m}, \mathfrak{n}$$

 $(\mathfrak{m} \cap \mathfrak{n})^{\circ} \supset \mathfrak{m}^{\circ}, \mathfrak{n}^{\circ}$

Thus

$$(\mathfrak{m} \cap \mathfrak{n})^{\circ} \supset \mathfrak{m}^{\circ} + \mathfrak{n}^{\circ} \tag{1}$$

But then it follows (by applying \cdot° to all sets) that

$$(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ})^{\circ} \supset (\mathfrak{m}^{\circ})^{\circ} + (\mathfrak{n}^{\circ})^{\circ}$$
$$\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ} \supset \mathfrak{m} + \mathfrak{n}$$
(2)

From (1) also follows that

$$\dim\left(\mathfrak{m}\cap\mathfrak{n}\right)^{\circ}\geq\dim\left(\mathfrak{m}^{\circ}+\mathfrak{n}^{\circ}\right)$$

Letting $N = \dim(\mathfrak{V}), m = \dim \mathfrak{m}, n = \dim(\mathfrak{n})$, we have

$$N - \dim \left(\mathfrak{m} \cap \mathfrak{n}\right) \ge \dim \left(\mathfrak{m}^{\circ}\right) + \dim \left(\mathfrak{n}^{\circ}\right) - \dim \left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right)$$
$$N - \left(m + n - \dim \left(\mathfrak{m} + \mathfrak{n}\right)\right) \ge N - m + N - n - \dim \left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right)$$
$$\dim \left(\mathfrak{m} + \mathfrak{n}\right) \ge N - \dim \left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right)$$
$$\dim \left(\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ}\right) \ge N - \dim \left(\mathfrak{m} + \mathfrak{n}\right)$$
(3)

Now, (2) and (3) together imply that

$$\mathfrak{m}^{\circ} \cap \mathfrak{n}^{\circ} = (\mathfrak{m} + \mathfrak{n})^{\circ}$$

and in a similar way as (2) follows from (1), we may turn this formula into $(\mathfrak{m} \cap \mathfrak{n})^{\circ} = \mathfrak{m}^{\circ} + \mathfrak{n}^{\circ}).$

Finite-Dimensional Vector Spaces – Halmos

ISBN10: 0-387-90093-4