2 - Group Theory

3 - Some Preliminary Lemmas

Exercise 4 (page 35)

Let $P(i)$ be the proposition $(a b)^{i}=a^{i} b^{i}$, for all a, b in G, where i is some integer. The problem can then be restated as $P(i) \wedge P(i+1) \wedge P(i+2) \Rightarrow$ G is abelian.

To prove this, we begin by noting (see below for proof) that

$$
\begin{equation*}
P(i) \wedge P(i+1) \Rightarrow(a b)^{i}=(b a)^{i} \tag{1}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
P(i+1) \wedge P(i+2) \Rightarrow(a b)^{i+1}=(b a)^{i+1} \tag{2}
\end{equation*}
$$

Now, $(a b)^{i}=(b a)^{i} \Rightarrow(a b)^{-i}=(b a)^{-i}$, applying to $(a b)^{i+1}=(b a)^{i+1}$ yields $a b=b a$.

Proof of (1):

$$
\begin{gathered}
(a b)^{i}=a^{i} b^{i} \\
(a b)^{i+1}=a^{i+1} b^{i+1}
\end{gathered}
$$

Now $(a b)^{i+1}=a(b a)^{i} b$, so we get $(b a)^{i}=a^{i} b^{i}=(a b)^{i}$.
Exercise 11 (page 35)
Suppose $a^{2} \neq e$ for all $a \neq e$, i.e. $a \neq a^{-1}$ for all $a \neq e$. Since every element in G has a unique inverse and no $a \neq e$ has e as an inverse, $P=$ $\left\{\left\{a, a^{-1}\right\} \mid a \neq e, a \in G\right\}$ partitions $G-\{e\}$. Now on one hand, since P partitions $G-\{e\},\|G-\{e\}\|$ is even. On the other hand, since $\|G\|$ is even, $\|G-\{e\}\|$ must be odd. We have reached a contradiction!

Exercise 12 (page 35)

We need to show $e a=a$ and $y(a) a=e$, for all $a \in G$.

$$
\begin{gathered}
e=y(a) y(y(a))=(y(a) e) y(y(a))= \\
(y(a)(a y(a))) y(y(a))= \\
((y(a) a) y(a)) y(y(a))=
\end{gathered}
$$

$$
\begin{gathered}
(y(a) a)(y(a) y(y(a)))= \\
(y(a) a) e= \\
y(a) a
\end{gathered}
$$

Using this we also easily have $a=a e=a(y(a) a)=(a y(a)) a=e a$.

Exercise 14 (page 36)

Suppose $a \in G$ is an element s.t. $a^{2} \neq a$. Then $\exists n \geq 1$ s.t. $a^{n+1}=a$, since G is finite. We claim that a^{n} satisfies $a^{n} b=b a^{n}=b$, for all $b \in G$. This is true since

$$
\begin{aligned}
a^{n+1} & =a \\
a^{n+1} b & =a b \\
a^{n} b & =b
\end{aligned}
$$

Where the last equality follows from left-cancellation.
Now $b a^{n}=b$ follows similarly. Therefore a^{n} is the identity element.
It is easy to see that a^{n-1} is both the left and right inverse of a.

5-A Counting Principle

Exercise 2 (page 46)

We will show that if there is $a \in G$ of finite order, then $\cap H=\{e\}$, where H ranges over the subgroups of G such that $H \neq\{e\}$ (i.e. H is non-trivial).

Clearly $\langle a\rangle \supset \cap H$. We now show that $\cap_{H \subset\langle a\rangle} H=\{e\}$. Pick any $H \subset\langle a\rangle$. There exists a smallest $n>0$ s.t. $a^{n} \in H$. Suppose $n \nmid m$ for some m. Then $x=x n+y$ for some $0<y<n$. Thus $a^{m}=a^{x n+y} \Rightarrow a^{m-x n}=a^{y} \in G$ which contradicts minimality of n.

We can now easily state that $a^{k} \in G$ iff $n \mid k$. Thus $a^{k} \in \cap_{H \subset\langle a\rangle} H$ iff $p \mid k$ for all $p \in \mathbb{Z}$. This implies that $k=0$, so $\cap_{H \subset\langle a\rangle} H=\{e\}$.

