
1 - Functions on Euclidean Space

1 - Norm and inner product

Exercise 7 (page 4)

(a) Suppose T preserves inner product. Then |Tx| =
√
〈Tx, Tx〉 =

√
〈x, x〉 =

|x|. Thus T is norm preserving. Now suppose T preserves norm. Then by

theorem 1-2(5), we have 〈Tx, Ty〉 = |Tx+Ty|2−|Tx−Ty|2
4

= |T (x+y)|2−|T (x−y)|2
4

=
|x+y|2−|x−y|2

4
= 〈x, y〉, and so T preserves inner product. (b) If T was not

1-to-1, then there would exist x, y with x 6= y (i.e. |x− y| > 0), yet with
Tx = Ty (i.e. |Tx− Ty| = 0. But by hypothesis |Tx− Ty| = |x− y| = 0, so
T must have an inverse, which is clearly also norm preserving (and therefore
it also preserves the inner product).

2 - Differentiation

5 - Inverse functions

Exercise 37 (page 39)

(a) Define g : R2 → R2 as g(x, y) = (f(x, y), y). The differential is then

g′(x, y) =

(
D1f(x, y) D2f(x, y)

0 1

)
and so det g′(x, y) = D1f(x, y). Now, if f is 1 − 1, then there must exist
some point (a, b) at which det g′(a, b) 6= 0.

4 - Integration on Chains

1 - Algebraic Preliminaries

Exercise 4 (page 85)

1



Since dim(Λn(R)) = 1, and since ω ∈ Λn(V ) implies that f ∗ω ∈ Λn(Rn),
we know that f ∗ω = c det for some c ∈ R. To find out c, we evaluate this
equation at (e1, . . . , en):

f ∗ω(e1, . . . , en) = c det

e1...
en

 = c

or
ω(f(e1), . . . , f(en)) = c

Applying Theorem 4-6, we get

det(aij) · ω(v1, . . . , vn) = c

where {vi}ni=1 is a basis for v and the aij are defined by f(ei) =
∑n

j=1 aijvj.
By hypothesis, [f(e1), . . . , f(en)] = µ so that det(aij) = 1. Also, since ω is
the volume element w.r.t. µ and T , we get ω(v1, . . . , vn) = 1, so we conclude
c = 1. Thus f ∗ω = det follows.

4 - The Fundamental Theorem of Calculus

Exercise 29 (page 105)

To show existence, define λ =
∫
ω =

∫ 1

0
fdx, and g(x) =

∫ x

0
fdx − λx. By

Theorem 4-7, we calculate dg = Dg · dx. Dg = f − λ, so dg = ω − λdx
follows. Also note that g(0) =

∫ 0

0
fdx− λ · 0 = 0, and g(1) =

∫ 1

0
fdx− λ =∫ 1

0
fdx−

∫ 1

0
fdx = 0, so g(0) = g(1) = 0.

To show uniqueness, suppose that ω − λdx = dg, where g(0) = g(1).
Integrating, we get ∫ 1

0

ω − λ =

∫ 1

0

dg

By Stoke’s theorem, we have
∫ 1

0
dg = g(1)− g(0) = 0, so λ =

∫ 1

0
ω =

∫ 1

0
fdx.

So the λ is completely determined by f , and is thus unique.

Exercise 34 (page 108)

(a) Following the definitions, we have
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∂CF,G = −(CF,G)(1,0)+(CF,G)(1,1)+(CF,G)(2,0)−(CF,G)(2,1)−(CF,G)(3,0)+(CF,G)(3,1)

where

(CF,G)(1,0)(u, v) = CF,G(0, u, v) = F (0, u)−G(0, v) = CF0,G0(u, v)

(CF,G)(1,1)(u, v) = CF,G(1, u, v) = F (1, u)−G(1, v) = CF1,G1(u, v)

(CF,G)(2,0)(s, v) = CF,G(s, 0, v) = F (s, 0)−G(s, v)

(CF,G)(2,1)(s, v) = CF,G(s, 1, v) = F (s, 1)−G(s, v)

(CF,G)(3,0)(s, u) = CF,G(s, u, 0) = F (s, u)−G(s, 0)

(CF,G)(3,1)(s, v) = CF,G(s, u, 1) = F (s, u)−G(s, 1)

Since each Fs is closed, i.e. F (s, 0) = F (s, 1), for all s, we see that
(CF,G)(2,0) = (CF,G)(2,1).

Similarly, since each Gs is closed, (CF,G)(3,0) = (CF,G)(3,1). Thus, the
only surviving terms of ∂CF,G are those due to (CF,G)(1,0) and (CF,G)(1,1). So
∂CF,G = CF1,G1 − CF0,G0 follows.

(b) If dω = 0 then by (a) and Theorem 4-13 (Stoke’s theorem), we get

0 =

∫
CF,G

dω =

∫
∂CF,G

ω =

∫
CF1,G1

ω −
∫
CF0,G0

ω

so we conclude
∫
CF1,G1

ω =
∫
CF0,G0

ω.
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