1 - Functions on Euclidean Space

1 - Norm and inner product

Exercise 7 (page 4)

(a) Suppose T preserves inner product. Then $|T x|=\sqrt{\langle T x, T x\rangle}=\sqrt{\langle x, x\rangle}=$ $|x|$. Thus T is norm preserving. Now suppose T preserves norm. Then by theorem 1-2(5), we have $\langle T x, T y\rangle=\frac{|T x+T y|^{2}-|T x-T y|^{2}}{4}=\frac{|T(x+y)|^{2}-|T(x-y)|^{2}}{4}=$ $\frac{|x+y|^{2}-|x-y|^{2}}{4}=\langle x, y\rangle$, and so T preserves inner product. (b) If T was not 1-to-1, then there would exist x, y with $x \neq y$ (i.e. $|x-y|>0$), yet with $T x=T y$ (i.e. $|T x-T y|=0$. But by hypothesis $|T x-T y|=|x-y|=0$, so T must have an inverse, which is clearly also norm preserving (and therefore it also preserves the inner product).

2-Differentiation

5 - Inverse functions

Exercise 37 (page 39)
(a) Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as $g(x, y)=(f(x, y), y)$. The differential is then

$$
g^{\prime}(x, y)=\left(\begin{array}{cc}
D_{1} f(x, y) & D_{2} f(x, y) \\
0 & 1
\end{array}\right)
$$

and so $\operatorname{det} g^{\prime}(x, y)=D_{1} f(x, y)$. Now, if f is $1-1$, then there must exist some point (a, b) at which $\operatorname{det} g^{\prime}(a, b) \neq 0$.

4 - Integration on Chains

1 - Algebraic Preliminaries

Exercise 4 (page 85)

Since $\operatorname{dim}\left(\Lambda^{n}(\mathbb{R})\right)=1$, and since $\omega \in \Lambda^{n}(V)$ implies that $f^{*} \omega \in \Lambda^{n}\left(\mathbb{R}^{n}\right)$, we know that $f^{*} \omega=c$ det for some $c \in \mathbb{R}$. To find out c, we evaluate this equation at $\left(e_{1}, \ldots, e_{n}\right)$:

$$
f^{*} \omega\left(e_{1}, \ldots, e_{n}\right)=c \operatorname{det}\left(\begin{array}{c}
e_{1} \\
\vdots \\
e_{n}
\end{array}\right)=c
$$

or

$$
\omega\left(f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right)=c
$$

Applying Theorem 4-6, we get

$$
\operatorname{det}\left(a_{i j}\right) \cdot \omega\left(v_{1}, \ldots, v_{n}\right)=c
$$

where $\left\{v_{i}\right\}_{i=1}^{n}$ is a basis for v and the $a_{i j}$ are defined by $f\left(e_{i}\right)=\sum_{j=1}^{n} a_{i j} v_{j}$. By hypothesis, $\left[f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right]=\mu$ so that $\operatorname{det}\left(a_{i j}\right)=1$. Also, since ω is the volume element w.r.t. μ and T, we get $\omega\left(v_{1}, \ldots, v_{n}\right)=1$, so we conclude $c=1$. Thus $f^{*} \omega=\operatorname{det}$ follows.

4 - The Fundamental Theorem of Calculus

Exercise 29 (page 105)

To show existence, define $\lambda=\int \omega=\int_{0}^{1} f d x$, and $g(x)=\int_{0}^{x} f d x-\lambda x$. By Theorem 4-7, we calculate $d g=D g \cdot d x . \quad D g=f-\lambda$, so $d g=\omega-\lambda d x$ follows. Also note that $g(0)=\int_{0}^{0} f d x-\lambda \cdot 0=0$, and $g(1)=\int_{0}^{1} f d x-\lambda=$ $\int_{0}^{1} f d x-\int_{0}^{1} f d x=0$, so $g(0)=g(1)=0$.

To show uniqueness, suppose that $\omega-\lambda d x=d g$, where $g(0)=g(1)$. Integrating, we get

$$
\int_{0}^{1} \omega-\lambda=\int_{0}^{1} d g
$$

By Stoke's theorem, we have $\int_{0}^{1} d g=g(1)-g(0)=0$, so $\lambda=\int_{0}^{1} \omega=\int_{0}^{1} f d x$. So the λ is completely determined by f, and is thus unique.

Exercise 34 (page 108)

(a) Following the definitions, we have

$$
\partial C_{F, G}=-\left(C_{F, G}\right)_{(1,0)}+\left(C_{F, G}\right)_{(1,1)}+\left(C_{F, G}\right)_{(2,0)}-\left(C_{F, G}\right)_{(2,1)}-\left(C_{F, G}\right)_{(3,0)}+\left(C_{F, G}\right)_{(3,1)}
$$

where

$$
\begin{gathered}
\left(C_{F, G}\right)_{(1,0)}(u, v)=C_{F, G}(0, u, v)=F(0, u)-G(0, v)=C_{F_{0}, G_{0}}(u, v) \\
\left(C_{F, G}\right)_{(1,1)}(u, v)=C_{F, G}(1, u, v)=F(1, u)-G(1, v)=C_{F_{1}, G_{1}}(u, v) \\
\left(C_{F, G}\right)_{(2,0)}(s, v)=C_{F, G}(s, 0, v)=F(s, 0)-G(s, v) \\
\left(C_{F, G}\right)_{(2,1)}(s, v)=C_{F, G}(s, 1, v)=F(s, 1)-G(s, v) \\
\left(C_{F, G}\right)_{(3,0)}(s, u)=C_{F, G}(s, u, 0)=F(s, u)-G(s, 0) \\
\left(C_{F, G}\right)_{(3,1)}(s, v)=C_{F, G}(s, u, 1)=F(s, u)-G(s, 1)
\end{gathered}
$$

Since each F_{s} is closed, i.e. $F(s, 0)=F(s, 1)$, for all s, we see that $\left(C_{F, G}\right)_{(2,0)}=\left(C_{F, G}\right)_{(2,1)}$.

Similarly, since each G_{s} is closed, $\left(C_{F, G}\right)_{(3,0)}=\left(C_{F, G}\right)_{(3,1)}$. Thus, the only surviving terms of $\partial C_{F, G}$ are those due to $\left(C_{F, G}\right)_{(1,0)}$ and $\left(C_{F, G}\right)_{(1,1)}$. So $\partial C_{F, G}=C_{F_{1}, G_{1}}-C_{F_{0}, G_{0}}$ follows.
(b) If $d \omega=0$ then by (a) and Theorem 4-13 (Stoke's theorem), we get

$$
0=\int_{C_{F, G}} d \omega=\int_{\partial C_{F, G}} \omega=\int_{C_{F_{1}, G_{1}}} \omega-\int_{C_{F_{0}, G_{0}}} \omega
$$

so we conclude $\int_{C_{F_{1}, G_{1}}} \omega=\int_{C_{F_{0}, G_{0}}} \omega$.

