We begin by defining

$$x_{0} = 0$$

$$x_{n} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

$$r_{n} = \frac{1}{n+1}$$

$$U = \mathbb{E}^{2} - \{(x, 0) : x \ge 0\}$$

$$B_{n} = B(x_{n}, r_{n}), n \ge 0$$

We claim that $\{U, B_1, \ldots\}$ constitutes an open cover of \mathbb{E}^2 . (To see that it is really a cover, first note that (x_n) diverges. Therefore, for any $a \ge 0$, there is a largest N such that $x_N \le a$. This implies that $|x_N - a| < r_n$, i.e. $(a, 0) \in B_N$. In other words, any point in U^c is contained in some B_n , so we have a cover. It should be clear that the selected sets are open.)

We will now see that this open cover shows that Lebesgue's lemma doesn't hold for \mathbb{E}^2 . Pick some $\delta > 0$, and pick N large enough that $r_N < \delta$. Then the open ball $B((x_N, 0), \delta)$ is not contained U nor in any B_n .