Yes, it is true. Suppose $x+y, y+z$ and $x+z$ were not linearly independent. For instance, suppose $\exists \alpha, \beta$ s.t. $\alpha(x+y)+\beta(y+z)=x+z$. Then we'd have

$$
\begin{gathered}
\alpha(x+y)+\beta(y+z)=x+z \\
(1-\alpha) x+(1-\beta) z=y(\alpha+\beta)
\end{gathered}
$$

If any two of $1-\alpha, 1-\beta$ and $\alpha+\beta$ are zero, then the third one is not zero:

$$
\begin{aligned}
& 1-\alpha=0 \text { and } 1-\beta=0 \Rightarrow \alpha+\beta=2 \\
& 1-\alpha=0 \text { and } \alpha+\beta=0 \Rightarrow 1-\beta=2 \\
& 1-\beta=0 \text { and } \alpha+\beta=0 \Rightarrow 1-\alpha=2
\end{aligned}
$$

Therefore $\{x, y, z\}$ are linearly dependent.

